JOBD and Australian OBD standard

JOBD

JOBD is a version of OBD-II for vehicles sold in Japan.

ADR 79/01 & 79/02 (Australian OBD standard)

The ADR 79/01 (Vehicle Standard (Australian Design Rule 79/01 – Emission Control for Light Vehicles) 2005) standard is the Australian equivalent of OBD-II.
It applies to all vehicles of category M1 and N1 with a Gross Vehicle Weight rating of 3500 kg or less, registered from new within Australia and produced since January 1, 2006 for petrol (gasoline) engined cars and since January 1, 2007 for diesel engined cars.
For newly introduced models, the regulation dates applied a year earlier – January 1, 2005 for petrol and January 1, 2006 for diesel.
The ADR 79/01 standard was supplemented by the ADR 79/02 standard which imposed tighter emissions restrictions, applicable to all vehicles of class M1 and N1 with a Gross Vehicle Weight rating of 3500 kg or less, from July 1, 2008 for new models, July 1, 2010 for all models.
The technical implementation of this standard is essentially the same as OBD-II, with the same SAE J1962 diagnostic link connector and signal protocols being used.

EOBD Introduction

The EOBD (European On Board Diagnostics) regulations are the European equivalent of OBD-II, and apply to all passenger cars of category M1 (with no more than 8 passenger seats and a Gross Vehicle Weight rating of 2500 kg or less) first registered within EU member states since January 1, 2001 for petrol (gasoline) engined cars and since January 1, 2004 for diesel engined cars.

For newly introduced models, the regulation dates applied a year earlier – January 1, 2000 for petrol and January 1, 2003 for diesel.
For passenger cars with a Gross Vehicle Weight rating of greater than 2500 kg and for light commercial vehicles, the regulation dates applied from January 1, 2002 for petrol models, and January 1, 2007 for diesel models.

The technical implementation of EOBD is essentially the same as OBD-II, with the same SAE J1962 diagnostic link connector and signal protocols being used.

With Euro V and Euro VI emission standards, EOBD emission thresholds will be lower than previous Euro III and IV.

EOBD fault codes

Each of the EOBD fault codes consists of five characters: a letter, followed by four numbers. The letter refers to the system being interrogated e.g. Pxxxx would refer to the powertrain system. The next character would be a 0 if complies to the EOBD standard. So it should look like P0xxx.

The next character would refer to the sub system.

  • P00xx – Fuel and Air Metering and Auxiliary Emission Controls.
  • P01xx – Fuel and Air Metering.
  • P02xx – Fuel and Air Metering (Injector Circuit).
  • P03xx – Ignition System or Misfire.
  • P04xx – Auxiliary Emissions Controls.
  • P05xx – Vehicle Speed Controls and Idle Control System.
  • P06xx – Computer Output Circuit.
  • P07xx – Transmission.
  • P08xx – Transmission.

The following two characters would refer to the individual fault within each subsystem.

EOBD2

The term “EOBD2″ is marketing speak used by some vehicle manufacturers to refer to manufacturer-specific features that are not actually part of the OBD or EOBD standard. In this case “E” stands for Enhanced.

OBDII signal protocols

There are five signaling protocols that are permitted with the OBD-II interface. Most vehicles implement only one of the protocols. It is often possible to deduce the protocol used based on which pins are present on the J1962 connector:

  • SAE J1850 PWM (pulse-width modulation — 41.6 kB/sec, standard of the Ford Motor Company)
    • pin 2: Bus+
    • pin 10: Bus–
    • High voltage is +5 V
    • Message length is restricted to 12 bytes, including CRC
    • Employs a multi-master arbitration scheme called ‘Carrier Sense Multiple Access with Non-Destructive Arbitration’ (CSMA/NDA)
  • SAE J1850 VPW (variable pulse width — 10.4/41.6 kB/sec, standard of General Motors)
    • pin 2: Bus+
    • Bus idles low
    • High voltage is +7 V
    • Decision point is +3.5 V
    • Message length is restricted to 12 bytes, including CRC
    • Employs CSMA/NDA
  • ISO 9141-2. This protocol has an asynchronous serial data rate of 10.4 kBaud. It is somewhat similar to RS-232; however, the signal levels are different, and communications happens on a single, bidirectional line without additional handshake signals. ISO 9141-2 is primarily used in Chrysler, European, and Asian vehicles.
    • pin 7: K-line
    • pin 15: L-line (optional)
    • UART signaling
    • K-line idles high, with a 510 ohm resistor to Vbatt
    • The active/dominant state is driven low with an open-collector driver.
    • Message length is restricted to 12 bytes, including CRC
  • ISO 14230 KWP2000 (Keyword Protocol 2000)
    • pin 7: K-line
    • pin 15: L-line (optional)
    • Physical layer identical to ISO 9141-2
    • Data rate 1.2 to 10.4 kBaud
    • Message may contain up to 255 bytes in the data field
  • ISO 15765 CAN(250 kBit/s or 500 kBit/s). The CAN protocol was developed by Bosch for automotive and industrial control. Unlike other OBD protocols, variants are widely use outside of the automotive industry. While it did not meet the OBD-II requirements for U.S. vehicles prior to 2003, as of 2008 all vehicles sold in the US are required to implement CAN as one of their signaling protocols.
    • pin 6: CAN High
    • pin 14: CAN Low

All OBD-II pinouts use the same connector, but different pins are used with the exception of pin 4 (battery ground) and pin 16 (battery positive).

What’s OBD-II?

OBD-II is an improvement over OBD-I in both capability and standardization. The OBD-II standard specifies the type of diagnostic connector and its pinout, the electrical signalling protocols available, and the messaging format. It also provides a candidate list of vehicle parameters to monitor along with how to encode the data for each. There is a pin in the connector that provides power for the scan tool from the vehicle battery, which eliminates the need to connect a scan tool to a power source separately. However, some technicians might still connect the scan tool to an auxiliary power source to protect data in the unusual event that a vehicle experiences a loss of electrical power due to a malfunction.

 

Finally, the OBD-II standard provides an extensible list of DTCs. As a result of this standardization, a single device can query the on-board computer(s) in any vehicle. This OBD-II came in two models OBD-IIA and OBD-IIB. OBD-II standardization was prompted by emissions requirements, and though only emission-related codes and data are required to be transmitted through it, most manufacturers have made the OBD-II Data Link Connector the only one in the vehicle through which all systems are diagnosed and programmed. OBD-II Diagnostic Trouble Codes are 4-digit, preceded by a letter: P for engine and transmission (powertrain), B for body, C for chassis, and U for network.

OBD History

OBD History :

1969: Volkswagen introduces the first on-board computer system with scanning capability, in their fuel-injected Type 3 models.
1975: Datsun 280Z On-board computers begin appearing on consumer vehicles, largely motivated by their need for real-time tuning of fuel injection systems. Simple OBD implementations appear, though there is no standardization in what is monitored or how it is reported.
1980: General Motors implements a proprietary interface and protocol for testing of the Engine Control Module (ECM) on the vehicle assembly line. The ‘assembly line diagnostic link’ (ALDL) protocol communicates at 160 baud with Pulse-width modulation (PWM) signaling and monitors very few vehicle systems. Implemented on California vehicles for the 1980 model year, and the rest of the United States in 1981, the ALDL was not intended for use outside the factory. The only available function for the owner is “Blinky Codes”. By connecting pins A and B (with ignition key ON and engine OFF), the ‘Check Engine Light’ (CEL) or ‘Service Engine Soon’ (SES) blinks out a two-digit number that corresponds to a specific error condition. Cadillac (gasoline) fuel-injected vehicles, however, are equipped with actual on-board diagnostics, providing trouble codes, actuator tests and sensor data through the new digital Electronic Climate Control display. Holding down ‘Off’ and ‘Warmer’ for several seconds activates the diagnostic mode without need for an external scan-tool.
1986: An upgraded version of the ALDL protocol appears which communicates at 8192 baud with half-duplex UART signaling. This protocol is defined in GM XDE-5024B.
1988: The Society of Automotive Engineers (SAE) recommends a standardized diagnostic connector and set of diagnostic test signals.
1991:[1] The California Air Resources Board (CARB) requires that all new vehicles sold in California in 1991 and newer vehicles have some basic OBD capability. These requirements are generally referred to as “OBD-I”, though this name is not applied until the introduction of OBD-II. The data link connector and its position are not standardized, nor is the data protocol.
~1994: Motivated by a desire for a state-wide emissions testing program, the CARB issues the OBD-II specification and mandates that it be adopted for all cars sold in California starting in model year 1996 (see CCR Title 13 Section 1968.1 and 40 CFR Part 86 Section 86.094). The DTCs and connector suggested by the SAE are incorporated into this specification.
1996: The OBD-II specification is made mandatory for all cars sold in the United States.
2001: The European Union makes EOBD mandatory for all gasoline (petrol) vehicles sold in the European Union, starting in MY2001 (see European emission standards Directive 98/69/EC[2]).
2004: The European Union makes EOBD mandatory for all diesel vehicles sold in the European Union
2008: All cars sold in the United States are required to use the ISO 15765-4[3] signaling standard (a variant of the Controller Area Network (CAN) bus).[4]
2008: Certain light vehicles in China are required by the Environmental Protection Administration Office to implement OBD (standard GB18352[5]) by July 1, 2008.[6] Some regional exemptions may apply.
2010: HDOBD (heavy duty) specification is made mandatory for selected commercial (non-passenger car) engines sold in the United States.

OBD-On board diagnostics

On-board diagnostics(OBD) is an automotive term referring to a vehicle’s self-diagnostic and reporting capability. OBD systems give the vehicle owner or repair technician access to the status of the various vehicle sub-systems. The amount of diagnostic information available via OBD has varied widely since its introduction in the early 1980s versions of on-board vehicle computers. Early versions of OBD would simply illuminate a malfunction indicator light or “idiot light” if a problem was detected but it would not provide any information as to the nature of the problem. Modern OBD implementations use a standardized digital communications port to provide real-time data in addition to a standardized series of diagnostic trouble codes, or DTCs, which allow one to rapidly identify and remedy malfunctions within the vehicle.